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$1. ST.ATE,MENT OF THE MAIN RESULTS 

LET X be a connected space. If nj(X, Z) N 0 forj I n - 1 and n,X N 0, then the Hurewicz 

map nj X N Rj X is an isomorphism for 0 5 j < n. The assumption 7r1 X = 0 is crucial and 

whenever it fails one encounters a space with vanishing integral homology up to dimension 

n, but which may have very rich homotopy in these dimensions. Important examples for 

this are homology spheres. 

The purpose of this paper is to analyze the homotopy structure of an arbitrary acycfic 

space (i.e. a space Xwith g,X N 0 where fi* denotes the reduced integral homology functor). 

This is done by means of a Postnikov-like decomposition into a tower of acyclic spaces 

which successively approximate X. The analysis leads to the construction of all acyclic 

spaces, and thus of many new examples of homology spheres. In addition, the constructions 

give a firmer hold on the algebraic K-groups. 

Definition 1.1. Let X be an acyclic space. By an acyclic decomposition of X we mean a 

tower of fibrations 

(*) lim E, = E, + .*. E, + E,_, + ... E, = (pt.) - 

together with a (weak) homotopy equivalence e: E, 3 X which satisfies the following con- 

ditions for all n 2 0: 

(i) The n-stage, E,, is acyclic; 

(ii) The n-stage, E, , is j-simple for all j > n (i.e. xlEn acts trivially on 7rj E,,); and 

(iii) The fibre of E, + E,_, is (n - 1)-connected. 

This definition is sensible in view of the following uniqueness and existence theorems. 

1.2. Uniqueness of acyclic decompositions 

Let X be acyclic. Then, given any two acyclic decompositions 

E’b, 
P!l . 

- ... Ef - E;_, E’; , . . . -E;(i=1,2) 

e’ - ! x 
339 
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there exists, in a natural way, a third acyclic decomposition tower: p, : E, -+ E,_ I with 

e:E, 2i X, and homotopy equivalences fni : E, -+Ei(i<nI co,i= 1,2) which render all 

diagrams commutative, i.e. f;_rpn = pifni and fLei = e for i = 1, 2. Furthermore, the 

homotopy class of equivalences u,‘] 3 vi]-’ which commutes with [e’]-i [e’] is unique. 

EXISTENCE THEOREM 1.3. Let X be an acyclic space. Then there exists a natural acyclic 

decomposition tower of X, denoted by 

AX=limAP,X- ... AP, X & AP,_,X----+... AP,X- pt. 

I - 

The main advantage of the acyclic tower 1.3 over the usual Postnikov tower is that one 

can easily construct acyclic decomposition towers, whereas it is hard to see how to proceed 

in constructing Postnikov towers which will yield, in the limit, acyclic spaces. 

1.4. Construction of acyclic decomposition towers 

For a given (r~ - 1)-stage (n 2 1) in (l.l), i.e. an acyclic space E,_, which isj-simple for 

all j > n - 1, we analyze all the choices for an n-stage over it: p. : E, -+ E,_, . 

We start with l-stages: 

1.4 (a). The case n = 1. The basic property of the fundamental group of an acyclic 

space is given by the following proposition; furthermore rrl gives a full classification of 

l-stages : 

PROPOSITION. Let E, be a l-stage. Then Hi(zlE,) 2: Ofir i = 1, 2. 

UNIQUENESS. Given two l-stages E:, E: and an isomorphism z,Ei + x~E~, then one 

can construct, in a natural way, a diagram E: c E, z E: of homotopy equivalences, 

which induces the given isomorphism on TC~ . 

EXISTENCE. Let 7~ be a group with Hin N 0 for i = 1, 2. Then there exists, in a natural 

way, an acyclic space A(n) with x~A(TI) N n, which is j-simple for all j > 1. 

1.4(b). The case n > 1. For a given acyclic decomposition tower of “ height ” (n - 1) : 

E,,_I -+ En_, --, =a. E, , we analyze the choices of adding an n-stage E, --f E,_, . 

These choices depend on the choice of a group and a k-“invariant,” which are defined 

as follows : 

Dejinilion. For a given n-stage over E,_,p, : E, + E,_ 1 , we define: 

(i) The acyclic homotopy group. These are groups which play a role analogous to that 

played by the homotopy groups in the Postnikov decomposition. They are defined by 

CL, E, = n,(fibre of p,). 

We will consider a, E, to be a n,E,-group. 
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(ii) The acyclic k-” invariant”. dlL1(p,), is defined to be the obstruction to a cross- 

section of p,. It follows from l.l(iii) that a”-‘(~,) lies in the cohomology group with 

twisted coefficients H”+l(E,_ 1 , CL, E,). 

For the acyclic homotopy groups we have the following analogue of Proposition 1.4(a). 

PROPOSITION. For any n-stage E, one has Hi(nI E, , u, E,) 1: 0 for i = 0, 1 (homology 

is taken with twisted coefficients). 

The acyclic homotopy groups and k-” invariants ” classify E, -+ E,_, as follows. Given 

an (n - 1)-stage, E,_, one has: 

UNIQUENESS. Afly two n-stages pi: EL 4 E,_, (i = 1, 2) are fibre-homotopy equivalent 

[2] if and only y there exists an isomorphism of rrIEI-groups z(n E,’ --f 2, Ei lr#zich carries the 

cohomology class a”+‘(p,‘) to a”+ ‘(pz). 

EXISTENCE. With notation as above, given any n,E,-module 6, witfz Hi(n,E, , u) 2: 0 for 

i = 0, 1 and any (twisted-)cocycle c”+’ E Z”+l (E,_, , CL) there exists, in a natural way, afibre 

map:p,: E, + E,_, such that E, is an n-stage, 2, E, N u as n,E,-groups, and cnfl E a”+‘(~~). 

1.5. The acyclic homotopy groups 

Some remarks on the connection between n,X and CL, AP, X are in order here. In fact, 

it follows from 1.2 that the groups tl, E, are independent of the specific decomposition tower, 

and thus are determined up to unique isomorphism by X. Thus one can denote them by 

sl, X. Further, it is not hard to see that u, X depends only on z, X as a n,X-module. 

Thus one can conclude that acyclic spaces are built out of acyclic homotopy groups 

and acyclic k-” invariants ” in the same way general spaces are built out of their homotopy 

groups and k-“ invariants”. Further, any perfect group IK or z-perfect module M (i.e. module 

M with Ho(n, M) N 0) can be extended to get groups which can serve as acyclic homotopy 

groups of acyclic spaces. Thus there are many candidates for acyclic homotopy groups. 

1.6. Organization of the Paper 

We work in the category S, of pointed simplicial Kan complexes [6]. This is more con- 

venient for our constructions. The nature of the proofs, however, is not combinatorial. 

In Section 2 we introduce the basic tool of our analysis, the acyclic functor, which is 

used in Section 3 to construct the acyclic decomposition and to prove 1.2 and 1.3. We deal 

with the proofs of 1.4(a) and (b) in Sections 4 and 5, respectively. 

$2. THE ACYCLIC F’UNCTOR 

The main tool in our work is an acyclic functor which “kills ” in a natural way the 

integral homology of any K E S,: 

THEOREM 2.1. There exists a functor 

A: S,+S, 
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andfor any K E S, a naturalfibre map a: AK -+ K such that: 

(i) AK is acyclic for all K. 

(ii) The map a: AK+ K is, up to homotopy, unirersal for maps of acyclic complexes 

into K. 

Further, any such fltnctor enjoys the properties: 

(iii) Letnbe1~n<co.IfiijK~Oforall1~j~n,thenthefibreofa:AK~Kis 

(n - 1)-connected, In particular, tf K is acyclic then a is an equivalence. 

(iv) If K is j-simple for some j 2 1 then so is AK. 

Our fimctor A satisfies, in addition, the following technical properties. 

(v) ifp: E -+ B is a (Kan-)jibre map then so is Ap. 

(vi) Let K, be the inverse limit of the tower: 

K,=bK,-+ 
Pn 

‘.. K,- K,_I ... - K, . 

Assume that for any s-skeleton (K,), the restriction p, 1 (K,), is an isomorphism for n big enough. 

Then AK, = !ir~ AK,, . 

2.2. The construction of A 

Let K E S,. We define AK by 

AK = lim A,K - 
where 

-... _,A,K... +AIK+A,K=K 

is a tower of fibrations defined as follows: 

(i) pI : A,K + K is the cover of K which corresponds to the maximal perfect subgroup 

of IT~K [3, p. l44]-one can easily check that any group G has a (unique) maximal subgroup 

PG which is perfect, i.e. equal to its own commutator subgroup, and that PC is a normal 

subgroup. 

(ii) A,, K(n > 1) is defined as the pull back in the diagram 

A, K -----------+ AP, Z A, _ , K 
I I 
I 
I 

I 

J I 
A,_,K - P,, ZA,_,K. 

Here Z denotes the reduced free abelian group functor [6, p. 981, P, the n-stage of the Post- 

nikov tower [8], and A the simplicial path functor [I, 1.2.21. 

2.3. Proof of Theorem 2.1 

It is obvious from the construction that A is a functor and AK+ K is a natural fibre 

map. Notice that since rc,ZK 21 fl,K, the complex ZK is n-connected under conditions (iii) 

of Theorem 2.1. Hence A, K-+ K is an equivalence and thus the fibre of AK- K is (n - l)- 

connected. This proves (iii). 
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To prove part (i) it is enough to show that for all n 2 0 iij A, K 2: 0 forj I n. This will 

imply that the fibre of A, K -+ A,_ 1 K is (n - 2)-connected and thus li,AK = lim H,A, K N 0. 

The case n = 1. By construction H,A,K z 0. 

The case n > 1. Assume HjA,_,K~ 0 for 1 <j I n - 1. Consider the diagram 

A,K-tA,__,KL P,ZA,_,K as in 2.2(ii), in which the base-space has the homotopy 

type of a K(H, A,_ lK, n). It is clear that H, p is an isomorphism. Since H,A, K 2: 0, Lemma 

2.4 below implies that Rj A, K N 0 for 0 <j I n. 

LEMMA 2.4. Let F-t E + B be ajibration where B has the homotopy type of a K(II; n) 

forsomen>l,thenHjE~ Hj B for j I n - 2, and one has an exact sequence: 

H,(B,H,F)-rH,F+H,E+H,B+H,_,F-,H,_,E-,O. 

Proof. This follows from the usual arguments in the Serre spectral sequence using the 

fact that H,,+,B 2: 0. 

2.5. Continuation of the proof of 2.1 

Part (ii) follows easily from (iii) and (i) using 3.4 and 3.5 below, (iv) follows from 2.6 

below and (v) is easily verified. As for (vi) 

It follows from our construction that if K+ L is an isomorphism on the s-skeletons, then 

A,L -+ A, K is an isomorphism on the (s - r)-skeletons. Thus lim A, K, N A, lim K” in 2.1 

(vi). The result follows. n n 

LEMMA 2.6. Let AH B --H C be an extension of n-modules for a perfect group 7~. 
Then TC acts trivially on B if and only $it acts trivially on both A and C. 

Proof. One has an exact sequence 

H,(n, C) + H~(T, A) + H&r, B) -+ H,,(z, C) --+ 0 

whose left-most term vanishes for trivial C. The “ only if” part is obvious. The “ if” par 

follows from the five-lemma. 

$3. THE ACYCLIC DECOME’OSITION TOWER 

In this section we construct a natural acyclic decomposition tower, thus proving 

Theorem 1.3. Using this tower we prove the uniqueness of acyclic decompositions 1.2. 

3.1. Construction 

Given an acyclic Kan complex X, consider the usual Postnikov tower of X: 

X= bP,X+... P,X+P,_,X+... PIX-+(pt.). 

The acyclic decomposition tower is gotten by applying the acyclic functor A to this 

tower. One gets a natural tower 
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AX -+ . . . AP,X+ AP,_,X+ . AP,X+(pt.). 

In which, 

(i) all maps are (Kan-)fibre maps, by 2.1(v), 

(ii) AX is the inverse limit of AP, X, since the tower P,, X satisfies the assumption of 

2.1 (vi). 

It remains to prove that our tower satisfies 1.1(i)-(iii). 

3.2. Proof of 1.3 

Parts (i) and (ii) follow from 2.1(i) and (iv), respectively. As for part (iii), first observe 

that p,: AP, X+ AP,_, X induces an isomorphism on rcj for j I n - 1, thus the fibre of pn 

is (n - 2)-connected. It remains to show that x,, AP, X -+ q, AP,_, X is onto. 

Consider the diagram of fibrations, where the maps are the obvious ones: 

/ _ 
AP, X- AP,_, X 

I I 
P,-IX = P”_lX. 

It is clear that for acyclic X, Hj P, X N 0 for all j < n + 1. Hence by 2.l(iii) and (iv), FL and 

F2 are (n - l)-connected and the fibration on the right is orientable. This implies that xnf 

is surjective iff H,,f” is. But by Lemma 3.5 below H,(x,P,_ 1 X, H,f) is bijective. This com- 

pletes the proof. 

3.3. Proof of 1.2 
_ 

One constructs E, from the diagrams EL - Ea - X(i = 1, 2) by takingthe 

“ total ” fibre-product of the diagram 

To prove 1.2 it is enough to show that all the maps in this diagram are homotopy 

equivalences. 

It follows from l.lCii) (iii) that these maps induce isomorphisms on rcj for j I n and 
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that all these spaces are j-simple for all j > n. This implies that the maps are homotopy 

equivalences by the following Lemma 3.4. Note that the uniqueness of y;l’] 0 Lf,‘]-’ follows 

from the obvious universal properties of an n-stage. 

LEMMA 3.4. Letf: X + Y be a map of acyclic complexes. Assume that whenecer X or 

Y is not j-simple, xjf is an isomorphism. Then n,f is an isomorphism for all n. 

Proof. This follows easily by induction on n: Assume rri f isomorphic for all j I n - 1; 

if both X and Y are n-simple then 

rr,X2: H,+,P,_,XA Hn+lP,-1 Y = n, Y, 

where the first and last isomorphisms follow from Lemma 3.5 below. 

LEMMA 3.5. Let F+ E + B be afibration of connected complexes withfibre F a K(h4, n) 
for some n > 1. Then M is a n, B-module and one has an exact sequence: 

H n+zE-+H,+z B-*H,(n,B;M)-rH,+,E-tH,+,B-*H,(~,B;M)-,H,E-,H,B-,O. 

If one only assumes that F is (n - 1)-connected then one should omit the three groups on 
the left. 

Proof. This is immediate from the Serre spectral sequence since H,+lK(M, n) N 0. 

This completes the general functorial constructions. We now turn to a step by step 

construction of acyclic decomposition towers. 

$4. SIMPLE ACYCLIC SPACES 

In this section we prove the statements of 1.4(a). We call an acyclic space simple if it is 

j-simple for all j > 1 (i.e. if it is a l-stage in the terminology of 1.4). Simple acyclic spaces 

are the analogue in the category of acyclic spaces of the K(Il, 1)‘s in S,. 

4.1. Proof of Proposition 1.4(a) 

Observe that for any K E S, one has H,K 2: H,n,K. Further, the natural map H, K-t 
H, n,K is onto. The last fact is due to [4], and follows easily from the spectral sequence of 
the fibration _% -+ X -+ K(nl X, , 1). Thus if H,K- H, K- 0, one must have H,n,K- 
H2x,K N 0. 

4.2. A classification theorem 

Uniqueness and existence in 1.4(a) are obvious from the following theorem: Let G 

denote the category of all groups g which satisfy Hio z 0 for i = 1, 2; and let as denote the 

homotopy category of all simple acyclic complexes in S,. 

THEOREM. The fundamental group functor x, : a* -+ G gives an equivalence of categories. 

Proof. We define an inverse to rcr by A V: G + a’, where wis as in [8]. It is clear from 

2.l(iv) that as is the range of A Wand that x,A i% = 0. Thus A wis a right inverse. Since the 

canonical map AX--+ A i%zlX induces isomorphism on rr, , it follows from 3.5 and 2.l(ii) 
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z 
that for X+a as one has natural equivalences X A AX - A I%,X. Thus, up to 

homotopy, A Vis a left inverse to rrI . This completes the proof. 

$5. PROOF OF 1.4(b) 

First observe that Proposition 1.4(b) is obvious from the Serre spectral sequence of the 

fibration F,, -+ E, -fk En_1, because F. is (n - 1)-connected and i?,p,: l?,E, -+ H,E,_I, 

is an isomorphism. 

We next give a brief review of “ twisted-k-invariants ” as developed in [7, 91. 

The problem is to classify, for a given Kan complex B, all possible fibrations 

K(M, n) 
P 

-E-B 

where n 2 1 and M is a given rc,B-module. 

Let Oh(p) E H”+‘(B, M) be the (twisted) obstruction to a cross-section of p. Then one 

has : 

5.1. A classification theorem for nonoriented fibration 

(i) Any two fibrations 

K(M’, m) 
Pi 

-E’-B (i = 1, 2) 

are fibre homotopy equivalent if and only if there exists an isomorphism of rr,B-modules 

M’ -+ M* which carries Ob(p’) to Ob(p*). 

(ii) For any (twisted-)cocycle I?‘+’ E Z”+l (B, M) and any n,B-module M there exists a 

fibration K(h4, n) - 
P 

E - B with c”+l E Oh(p) and rc,K(M, rz) z M as n,B-modules. 

Proof. See [6, 7, 81. A few words on the construction of p: E -+ B. Let L,(bf, n + 1) 

be the classifying complex for twisted coefficient cohomology, where 4: n = n,B -+ aut M. 

One can construct L,(M, n + 1) as follows: The constant simplicial group z = K(x, 0) acts 

via 4 on FM, thus one can form the twisted product to get a group complex: PM >- 

w”MX*c.- - -n n. L,(M, n + 1) is defined to be W( W M 2 x) and retracts to i@r. Ac- 

cording to [9] one has: The elements of Z”+’ (B,M) (twisted) are in a natural l-l corres- 

pondence with diagrams 

B - L&4, n + 1) 

\/ 
I // s 

i%,B 

and H”+‘(B, M) is naturally isomorphic to the group of homotopy classes of such diagrams. 

Now given a cocycle as in 5.l(ii), one constructs a corresponding pull-back diagram 

which defines E: 
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where A, is the ‘*path over Wrr ” functor [7] (Up to homotopy, p’ is the cross-section s.) 

Clearly c”‘r E Oh(p). 

5.2. Construction of the mstage 

We now prove the existence theorem 1.4(b). We are given a n,E,-module a with Hi(nrEr Y 

a> = 0 for i = 0, 1 and a cocycle cnil EZ”+‘(E”_,, x). Let 

K(a, n) 
P”’ 

- E,’ - E,_, 

be the corresponding fibration from S.l(ii). We define JI”: E” --f E”_ 1 for 1.4(b) by 

P”’ 
E” = AE”’ 0 E”’ - E”_I. 

The most important property of E”’ is: 

LE?dMA. IfO<j<n+ 1 thenfijE”‘-0. 

Proof. This is an immediate corollary of the exact sequence 3.5 since Hi(xrE”- 1’ a) ‘v 0 

for i=O, 1. 

The last lemma implies that the fibre of AE” ’ -+ E,’ is n-connected (see 2.1 (iii)), thus the 

first obstruction to a cross section ofp” is the same as that ofp”‘. Hence, by 5.l(ii) c”+’ E 

an+ ‘(P”). 

CRUCIAL PROPOSITION. The complex E” = AE,’ is an n-stage, and u,E, = u as a 
n,E,-module. 

Proof. Clearly E,’ is j-simple for all j 2 n + 1, because E”_ 1 is. By 2.1 (iv) E” is an n- 

stage. To prove the second part we consider the diagram of fibrations 

K(y, n> - E”’ - E”_, 

which gives the ladder of n,E,-groups: 
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Since HjE,’ 2: 0 fori I n + 1 (see lemma on previous page), one gets from Z.l(iii) that rr,u 

is bijective and 7-c” + 1 a is surjective. By the five-lemma r,E, z x. 

5.3. Proof of uniqueness 

Let f: &(x1, n + I) -+&,(x2, n + 1) be the map which corresponds to a given map 

map z1 + z2 where CL’ = z, E,‘. One has a diagram 

E”’ -_-_!‘__-_+ E,’ 

I P 

En_, - k-1 

I Ob(p’) I Ob(P’) 

L&‘, n + 1) L L&P, ?I + 1) 

in which p 0 Ob(p’) - 0 and thus p 0 0b(p2) - 0. So the first obstruction to a lifting f 

vanishes; all the higher obstructions lie in H”+i(E,_l, TT,,+~_, En*) (i 2 2) which is the zero 

group since En _ 1 is acyclic and E,’ is j-simple for j 2 n + 1, 

Since 7 induces isomorphism on rrj for j I n + 1, it follows from Lemma 3.5 thatfis a 

homotopy equivalence. Thus En’ is fibre homotopy equivalent to E,‘. 
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